

Solutions in heavy lift transport

Presentation MID, Breda

- 1. Company profile
- 2. Ship introduction
- 3. Transport engineering
- 4. Questions..?

1. Company profile

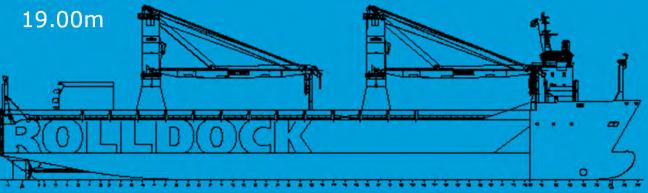
2. Ship introduction

ROLLDOCK S-CLASS

ROLLDOCK SUN ROLLDOCK SEA

L_{oa} 142.30m

B 24.00m


T 5.67m

 T_{max} 12.50m

L_{hold} 116.20m

B_{hold} 19.

2. Ship introduction

ROLLDOCK ST-CLASS

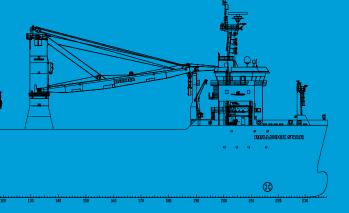
ROLLDOCK STAR

ROLLDOCK STORM

L_{oa} 151.50m

B 25.40m

T 5.67m

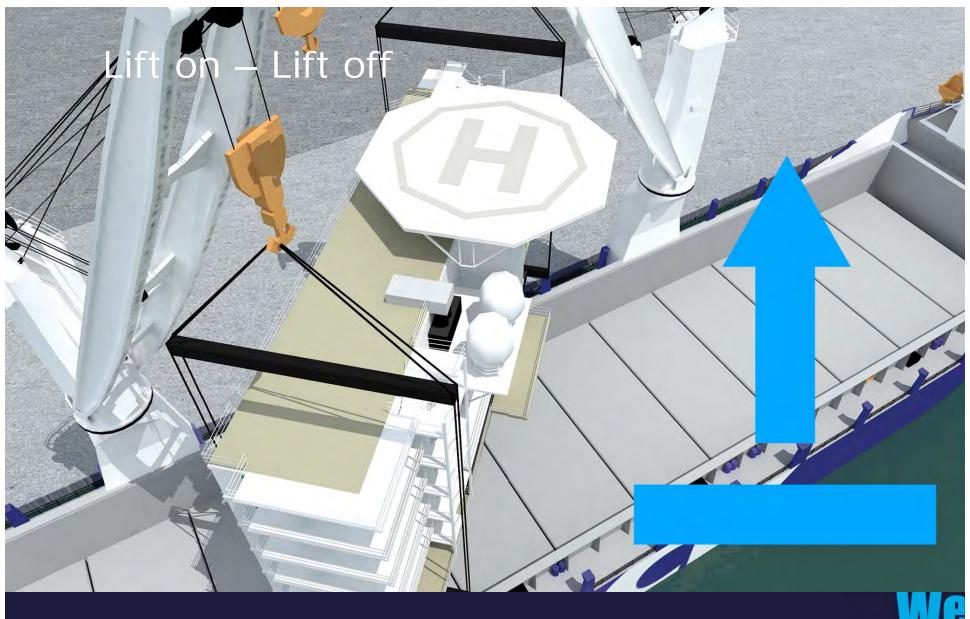

 T_{max} 12.50m

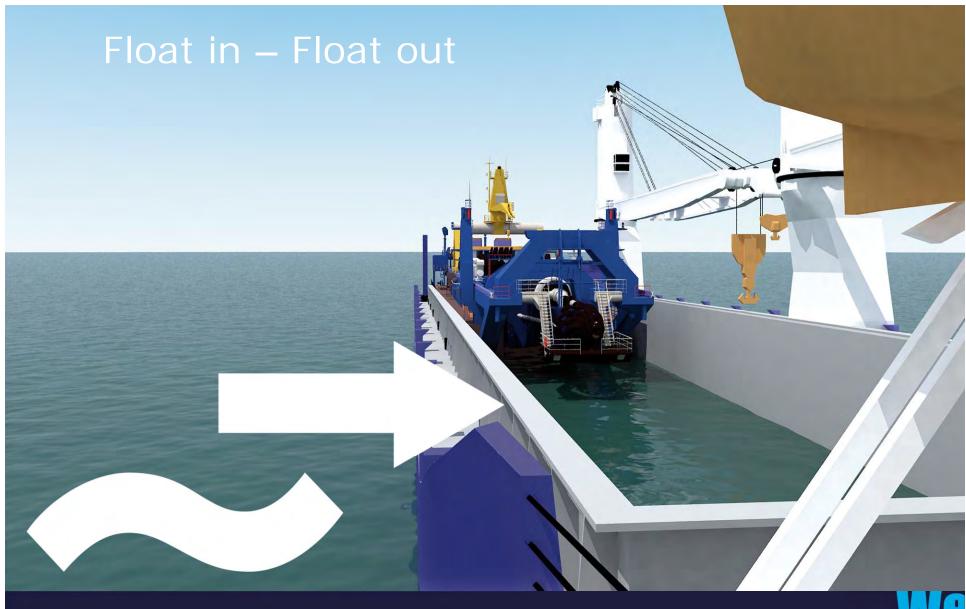
L_{hold} 119.40m

B_{hold} 19.40m

2. Ship introduction

Loading methods





- Engineering team
- 2. Engineering process
- 3. Project engineering
- 4. Project execution

1. Engineering team

ROLLDOCK ENGINEERING

ROLLDOCK

ROLL-LIFT

MARINE ENGINEERING

- -STABILITY ANALYSIS
- -MOTION ANALYSIS
- -SEAFASTENING DESIGN
- -MOORING ANALYSIS
- -RO-RO OPERATIONS
- -LO-LO OPERATIONS
- -FLO-FLO OPERATIONS

TRANSPORT/LIFTING ENGINEERING

- -TRANSPORT ANALYSIS
- -LIFTING ANALYSIS
- -STRUCTURAL DESIGN
- -LIFTING EQUIPMENT
- -SUPPORT/LOADSPREADING
- **EQUIPMENT**
- -SKIDDING OPERATIONS
- -JACKING OPERATIONS

PROJECT TEAM <

- 1. Engineering team
- 2. Engineering process

COMMERCIAL → ENGINEERING → OPERATIONS

ENQUIRY -> FIXTURE -> ENGINEERING

- DIMENSIONAL CHECK
- STABILITY CHECK
- LOAD/DISCHARGE CHECK
- LONGITUDINAL STRENGTH

- STOWAGE PLAN
- STABILITY CHECK
- **MOTION ANALYSIS**
- **DESIGN LOADS**
- SEAFASTENING DESIGN
- CRIBBING DESIGN
- STRUCTURAL ANALYSIS
- LOAD/DISCHARGE PLANS
- TRANSPORT MANUAL
- **CONTIGENCY PLANS**

EXECUTION

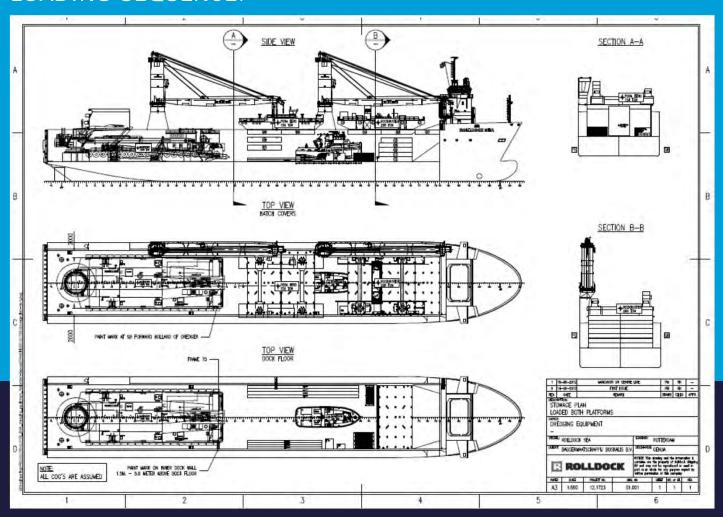
- LOADING PLAN
- BALLAST PLAN
- DISCHARGE PLAN
- SEAFASTENING **INSTALLATION PLAN**
- CRIBBING INSTALLATION PI AN
- MOORING PLAN
- PREPERATION BEFORE LOADING
- METHOD STATEMENTS

- 1. Engineering team
- 2. Engineering process
- 3. Project engineering

PROJECT DESCRIPTION

Cargo: Backhoe dredger

L_{oa} 47.50m B 15.00m


T 3.00m

3. Transport engineering STOWAGE PLAN

DIMENSIONAL CHECK IF CARGO CAN BE LOADED. LOADING SEQUENCE.

3. Transport engineering STABILITY ANALYSIS

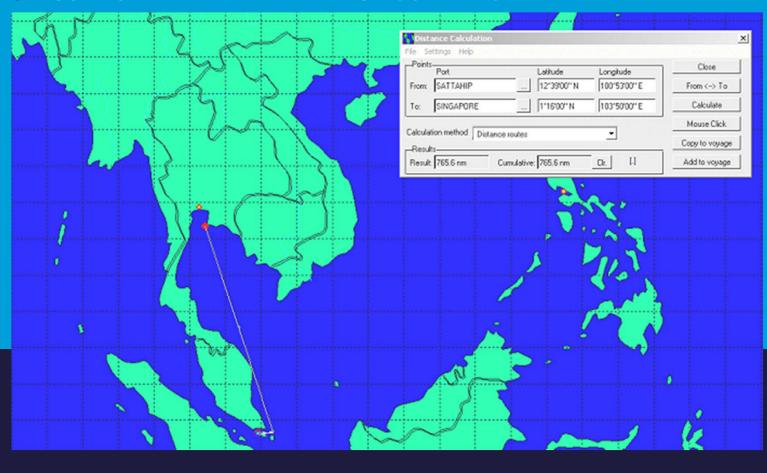
GHS STABILITY SOFTWARE → OFFICE
GLM LOADING COMPUTER → ON BOARD
FLEXIBILITY TO CONFIGURATE LOAD CASES FOR STABILITY

Design criteria

General accepted criteria

- GL Noble Denton Guidelines for Marine transports 0030
- DNV Marine operations

Motion alalysis


- Amarcon Octopus
- Marin SafeTrans

INPUT DATA

- **oROUTE DEFINITION**
- **OVESSEL STABILITY AND BALLAST CONDITION**

INPUT DATA

oROUTE DEFINITION

OVESSEL STABILITY AND BALLAST CONDITION

MAIN PARTICULARS

Project name BSK dredging equipment Revision no.

Project no. 12.1723 Revision date 6/14/2012

Client: Boskalis Author PH

Description	Value		
Length between perpendiculars	130.20	[m]	
Breadth	24.00	[m]	
Mean draft	4.90	[m]	
Displacement	11288.10	[m³]	
Block coefficient	0.70	[-]	
Midship section coefficient	1.00	[-]	
Longitudinal center of buyoancy	62.90	[m]	
Vertical center of buoyancy	2.70	[m]	
Transverse BM	10.70	[m]	
Waterline area	2771.00	[m²]	
Longitudinal metacentric height	294.00	[m]	
Transverse metacentric height	4.50	[m]	
Free surface correction	0.00	[m]	
Transverse radius of inertia for roll	9.10	[m]	
Longitudinal radius of inertia for pitch	32.80	[m]	
Longitudinal radius of inertia for yaw	33.00	[m]	
Longitudinal center of gravity	62.90	[m]	
Transverse center of gravity	0.00	[m]	
Vertical center of gravity	8.80	[m]	

OUTPUT DATA

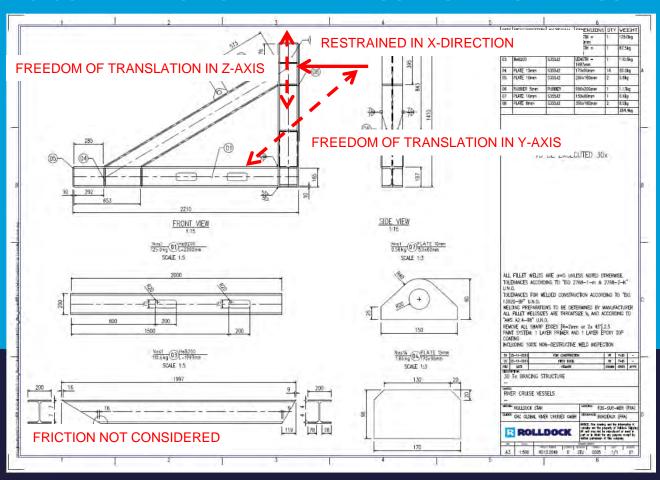
oDESIGN ACCELERATIONS

oX, Y, Z-DIRECTION (COMBINATION OF HEAVE+PITCH OR ROLL+PITCH)

RESULTS DESIGN VALUES

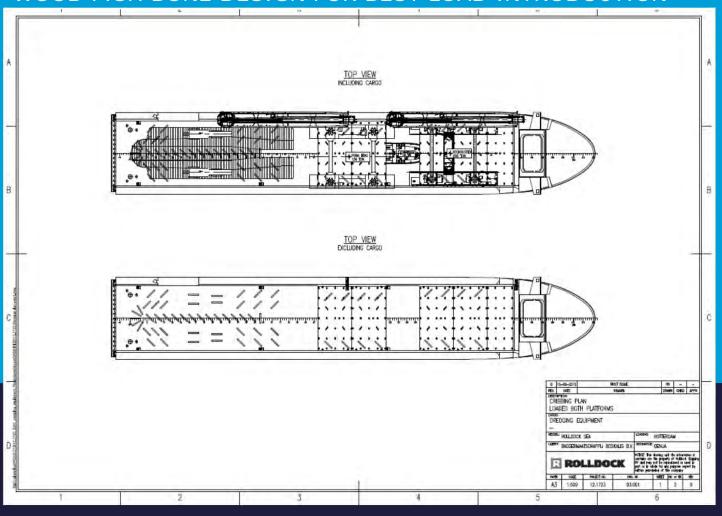
Project name BSK dredging equipment Revision no. 0

 Project no.
 12.1723
 Revision date
 6/14/2012


 Client:
 Boskalis
 Author
 PH

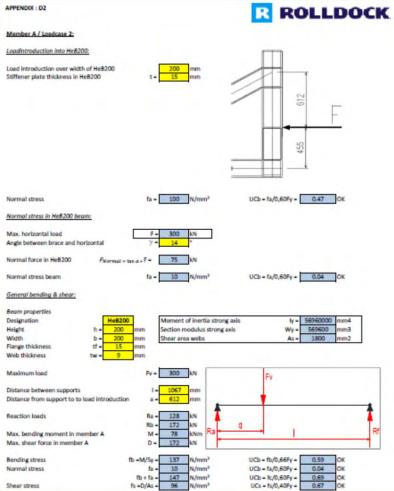
ID	Signal	# Oscilations	MPM for 10 voyag	es ~10N oscillations
1	motion x COG	78326	6.5	[m]
2	motion y COG	74599	3.66	[m]
3	motion z COG	77065	4.15	[m]
4	motion roll COG	85589	17.26	[deg]
5	motion pitch COG	81515	5.1	[deg]
6	motion yaw COG	80646	5.65	[deg]
7	motion x Bow	77848	6.52	[m]
8	motion y Bow	78114	7.54	[m]
9	motion z Bow	78824	7.59	[m]
10	acceleration z Bow	108293	5.67	[m/s ²]
11	relative water motion Bow	112696	9.15	[m]
12	relative water motion Station 10 P	117767	8.64	[m]
13	relative water motion Station 10 SB	115007	9.65	[m]
14	Roll acceleration	114064	6.57	[deg/s ²]
15	Pitch acceleration	114502	3.9	[deg/s ²]
16	Axx_Maricavor	105828	0.69	[m/s ²]
17	Ayy_Maricavor	97860	3,56	[m/s ²]
18	Azz_Maricavor	116739	3.05	[m/s ²]
19	Axx_Rockbuster	104455	1.17	[m/s ²]
20	Ayy_Rockbuster	100276	4.43	[m/s ²]
21	Azz_Rockbuster	102983	3.46	[m/s ²]
22	Axx_Pora Eero	104505	1.15	[m/s ²]
23	Ayy Pora Eero	99960	4.31	[m/s ²]
24	Azz_Pora Eero	104835	2.56	[m/s ²]
25	Axx_Rijnstroom	105911	0.67	[m/s ²]
26	Ayy_Rijnstroom	99232	3.51	[m/s ²]
27	Azz Rijnstroom	97739	2.82	[m/s ²]
28	wave height	91697	5	[m]

3. Transport engineering SEAFASTENING DESIGN


DESIGN ACCELERATIONS FROM SAFETRANS
SEPERATION OF FORCES IN X, Y AND Z DIRECTION
NO COMBINATION OF HARD AND SOFT SEAFASTENINGS

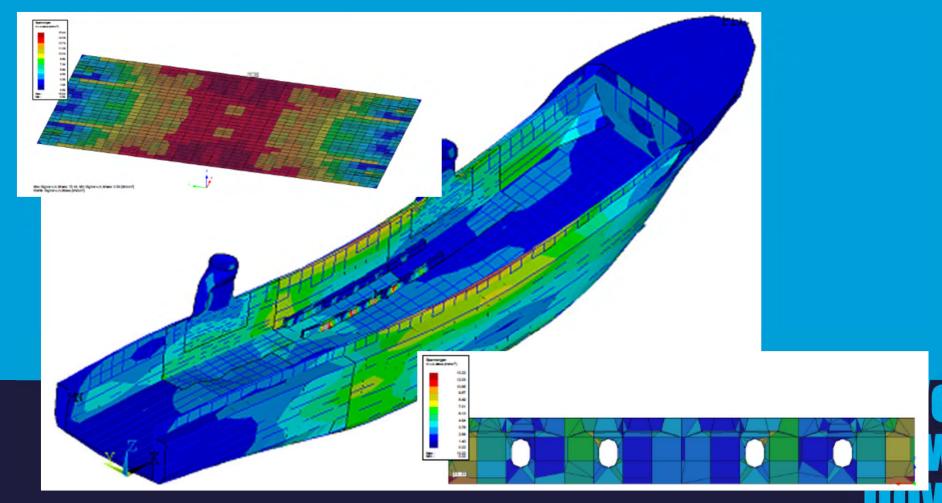
3. Transport engineering CRIBBING DESIGN

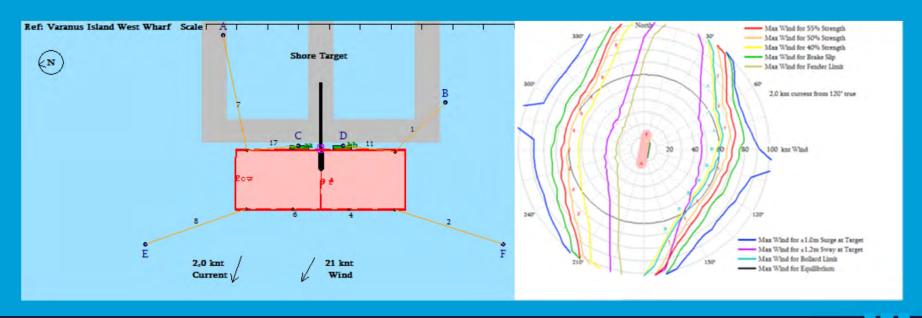
DESIGN ACCELERATIONS FROM SAFETRANS
WOOD FISH BONE DESIGN FOR BEST LOAD INTRODUCTION



3. Transport engineering STRUCTURAL ANALYSIS

LOCAL STRENGTH ANALYSIS

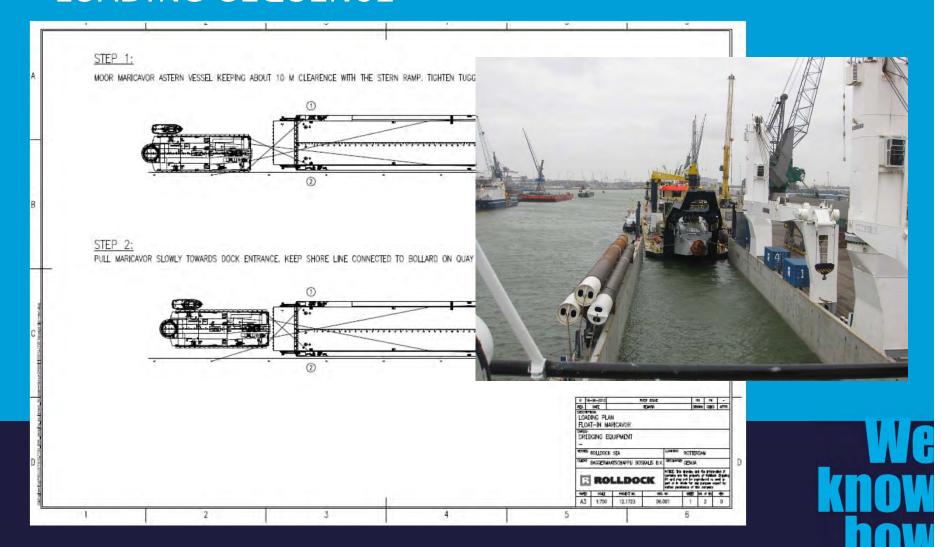




3. Transport engineering STRUCTURAL ANALYSIS

LOCAL STRENGTH ANALYSIS
GLOBAL STRENGTH ANALYSIS

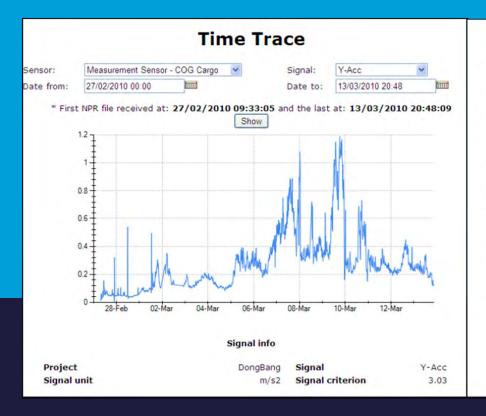
BASED ON MOORING LAYOUT
CURRENT DIRECTION
360DEGREE WIND SWEEP
MOORING LINE CONFIGURATION



- Engineering team
- 2. Engineering process
- 3. Project engineering
- 4. Project execution

LOADING SEQUENCE

INSTALLATION OF SEAFASTENINGS


VOYAGE MONITORING, LOGING AND MONITORING OCTOPUS ON BOARD

On-line vessel monitoring Vessel acceleration forecasting

VOYAGE MONITORING, LOGING AND MONITORING OCTOPUS ON BOARD

On-line vessel monitoring
Vessel acceleration forecasting

Project name	Skarv 2nd shipmen		
Project code	0471_2		
Start date	27/02/2010 00:00:00		
End date			
Report date (UTC)	13/03/2010 20:40:40		
Vessel	DongBang		
Run 24h [nm]	213.8 0 / 0		
F0/D0 24h [mT]			
ETA	14/03/2010 12:00:40		
итс	13/03/2010 20:40:40		
Latitude	34°23,177 N		
Longitude	128°45,088 E		
ROB FO [mT]	(
ROB DO [mT]	(
RPM	(
Speed [kn]	7.5		
Heading [°]	23.5		
Rest Miles	63.7		
Atm. Pressure [hPa]	1024		
Wind [kn]/[°]	14 / 60		
Current [kn]/[°]	0/0		
Sea [m]/[s]/[°]	0.5 / 0 / 60		
Swell [m]/[s]/[°]	0/0/0		

Octonue Noon Position Report

CHALLENGES DURING A PROJECT

- -DIMENSIONAL ACCURACY OF DREDGING EQUIPMENT (SUBJECT TO MANY CHANGES PROJECT BASED).
- -ACCURATE DESCRIPTION OF PROTRUTIONS.
- -CARGO WEIGHT, MASS DISTRIBUTION AND CoG.
- -DRAWINGS AND DOCUMENTATION OF CARGO.

4. QUESTIONS...?

