Fiber optical sensing

Eric van Genuchten Programme Manager Sensorized Bearings

SKF – a truly global company

Established

• Sales 2015

Employees

Production sites

• SKF presence

Distributors/dealers

1907

Euro 8,287 Million

46,635

around 115 in 29 countries

in over 130 countries

17,000 locations

Our solutions are everywhere

SKF technology

Technologies around the rotating shaft

Changing business reality

Globalization

- More competitive landscape across the value chain
- Asian companies going global
- Overcapacity in heavy and investment- driven industries

Technology

- Automation, electrification and digitalization drive the change
- New technology requirements for new applications
- Technology for cost competitiveness

Competitors

- New, emerging competitors gaining ground
- Chinese competitors strengthen position fueled by local market

Customers

- More transparent supplier market gives stronger buying power
- Strong price/cost focus
- Tougher competition and SKF traditional customer base under competitive pressure

Two value propositions in focus

1. Rotating equipment performance

Customer need:

"I want your products and my assets to reach technical end of life with trouble-free operation"

2. Product

Customer need:

"I want on-time delivery, quality and field performance, flawless launches of new products, technology and price"

Smartifying industry

Mobility becomes the window

the Cloud becomes the infrastructure

(Big) Data management becomes the intelligence

Connected sensors/systems become the data feed

Monitoring the heart of your application

"Bearing unique control point of the application"

What to monitor in that heart

Fiber Bragg Sensing - principle

Interrogator

Multiplex sensing

Up to 25 sensors per fiber

Technology integration

How do you measure

Parameter	Process parameter
Amplitude	Load
# peak / min	Speed
Response shape	Defects
Temperature	Offset
Amplitude different sensors	Loaded zone

Main sensing functionality in thrusters

Bearing loads

$$L_{10} = \frac{1}{\left[1 + \frac{u^m L_{10}^{(m-e)} I_s}{\ln(1/0.9)} \left(\frac{C}{P}\right)^{ep} (a_u)^e\right]^{1/e}} a_u \underbrace{\left(\frac{C}{P}\right)^p}_{\text{Load is the largest influence on bearing lifetime}} \text{Load is the largest influence on bearing lifetime}$$

Real application loads are often unknown, monitoring enables:

- Design optimization
- Bearing life Condition based maintenance
- Optimal operating regime's
- Full control lower cost/longer insurance period
- Fleet management best practice optimization
- •

Fiber Optical load Sensing

Measurement performance

- High signal-to-noise ratio
- Multiple variables: Load, temperature, pressure, vibration...
- Multiple sensors in one fiber

Harsh /hard accessible environments

- Intrinsic explosion safe
- Sub-water resistant
 - no corrosion
 - no signal issues from under water
- High chemical resistance
- Wide temperature range
- Robust against EM-interference

Pumps & Compressors

- One fiber for multi operating parameter sensing
- Large distances submerged
- New type of pumps development

Value:

- No electro magnetic interference
- integrated into the bearing small integration footprint
- large amounts of data
- One cable for Load, temperature, pressure and CoMo One ingress
- No monitoring solution currently available compressors
- Optimized operation/process control

Strain and speed measurement

- Able to identify roller speed.
 - Possible to identify bearing slip.
- The size of the loaded zone can be determined.
- Individual rollers can be identified by their signal strength.

Figure 5 Example of strain signals

Condition monitoring

- High frequency content imposed on roller pass.
- Small pressure reduction visible.
- Calculated length of defect = \sim 2 μ m

Jacking systems

- Load measurement during stand-still
- Absolute static load measuring without prior dynamic load information
- Absolute load as operating parameter

Value:

- Small footprint; integrated into the bearing
- Large amounts of data
- Direct measurement of load and load angle at the pinion
- Static load measuring possible due to sensor integration density (~2.5 mm)
- Harsh environment (salt water corrosion)

Application - Jacking systems

Application - Jacking systems

Two bearing position to measure **static and dynamic** load:

- Three stage spur gearbox
- At the pinion

Load estimate – quides are +/- 5%

Thruster pods monitoring

Vertical shaft

- Temperature
- Shock loads
- Load direction

Pinion shaft

- Temperature
- Shock loads
- Load direction
- CoMo

Propeller shaft

- Temperature
- Shock loads
- Load direction

Propeller shaft

- Temperature
- Shock loads

Load Measurement: Strain to Load

Measurements

Dis-balance in propeller shaft

Naming:

- 23138₀ Channel 0 pinion SRB
- 23138₁ Channel 1 pinion SRB
- 23044₀ Channel 0 Propeller SRB
- 23044₁ Channel 1 Propeller SRB
- 29336E SRTB

Sensing value

Via a sensor bearing we can sense multiple operating parameters in thrusters;

- Load (Axial/Radial)
- Direction of loaded zone
- Torque
- Bearing temperature & OR temperature distribution
- Speed & direction of rotation

What can be done with this operating information?

- Optimize operation
- Optimize maintenance
- Repair logistics
- OEM Design & Warranty
- 5 Optimize bearing design
- 6 Fleet mgnt & performance
- 7 Develop new certification rules
- 8 Understanding of insured object

SKF sensing solution

in thruster

2

Summary – Fibre optical sensing in Marine

An unique tool to monitor "unknown" thruster loads:

- Measuring "How your application is operated"
- Sensing is one, making sense of it is the complex part
- Multiple sensing; "You can get more then you expect"
- Sensors have to work:
 - At "impossible" situations
 - After extreme handling
- Internet-of-bearings

